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EFFECT OF GRAVITY  GRADIENT  TORQUE ON THE MOTION 
O F  THE  SPIN AXIS O F  AN ASYMMETRIC  VEHICLE 

By C. F. Harding 

Research  and  Development  
Pr inc ipa l   Inves t iga tor  

SUMMARY 

A new  method  developed  by  the  author  was  used  to  determine  the  effect  of 
gravity  gradient  torque  on  the  motion of the  spin  axis of a n   a s y m m e t r i c  
vehicle  in a precessing  c i rcular   orbi t   about   an  oblate   ear th .   I t   was  discov-  
ered  that   the  relative  att i tude of two  coordinate   systems  can  be  expressed 
a s  a function of the   angular -ve loc i ty   t ime  h i s tory   as   an   a l te rna te   for   the  
usua l   pa rame te r s .  When Euler   angles   a re   employed ,  a highly  nonlinear 
s y s t e m  of s ix   coupled  equat ions  resul ts .   The  system  can be reduced  to  a 
single  vector  equation  for  the  unknown  angular  velocity, w . The  equation 
is par t icu lar ly   s imple   and   readi ly   l ends   i t se l f   to  a complete   formal   solut ion 
by  the  theory of i t e ra t ions .  An acceptable  approximation of w leads  to  the 
summat ion  of an  inf ini te   ser ies   for   the  determinat ion of instantaneous  a t t i -  
tude.   This   general   procedure  was  employed  to   invest igate   the  s tabi l i ty  of a 
sp in   d i rec t ion   in   space .   The   parameters  of the  Manned  Orbiting  Research 
Laboratory  (MORL)  were  used.  The  investigation  shows  there  is  no appre -  
ciable  coning;  specifically,  the  spin  axis  (axis of maxi rnummoment  of i ne r t i a )  
deviates  no m o r e   t h a n  0.4 seconds of a r c   f rom  the   angu la r   momentumvec to r  
as   i t   wanders   in   space .   There  is ,  however ,  a la rger ,   ye t   s low,   var ia t ion  of 
angular  momentum  from  init ial   posit ion,   al though  this  is   tolerable  because 
i t   i s  no more  than 2 .  5 . An impor tan t   d i scovery   was   tha t   the   upper  bound of 
2 .  5 O  is independent of boundary  conditions  which  involve  different  spin-axis 
angles   to   the  Earth 's   equator .  An extension of the  method  to  el l iptic  orbits 
is outlined  in  the  appendix. 
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INTRODUCTION 

The  creation of on-board  e lectr ical   power is an  importa- t   requirement  
of a manned  orbi t ing  space  laboratory.  If s o l a r - c e l l   a r r a y s   a r e   u s e d   f o r  
this  purpose,   they  must  be  sun-oriented  continuously  for  long  periods of 
t ime.  To maintain  the  desired  or ientat ion,   the   space  vehicle   wil l  be spin- 
stabil ized  along a sun-vehicle   axis .   However ,   as   the  Earth  advances  a long 
i ts   orbit   about  the  sun,  the  space  vehicle  solar  cells   will   becomemisaligned. 



An  on-board  system  capable  of realigning  the  vehicle  wlll   be  periodically 
ac t iva ted   to   cor rec t   such   misa l ignment .   Fur ther ,   the   vehic le   wi l l   be   subjec t  
cont inuously  to   Earth  gravi ty   gradients ,   which  wil l   cause  the  spin axis to 
precess .   Spin-axis   p recess ion   grea te r   than  300 f rom  the  sun-point ing  direc-  
tion  could  cause a power  loss  of approximately  15%. 

For   t he   ana lys i s ,  two  assumpt ions   a re   made:  (1) the  vehicle is a p e r -  
fectly  r igid  asymmetric  body  (no  energy loss caused  by ro ta t ion) ,   and  
(2)  the  effect of an   ob la te   Ear th  is accounted  for  by a p recess ing   c i r cu la r  
orbit   (no  f ield  change  caused by obla teness) .   The   f i r s t   assumpt ion  is neces -  
s a r y  to   formula te   the   p roblem;   the   second  assumpt ion  is  known to  be 
accu ra t e .  

The  problem of grav i tygradien t   to rque   has   been   s tud ied   bymany  wr i te rs  
in   recent   years .   The   usua l   p rocedure   used   to   ob ta inan   ana ly t ica l   so lu t ion   as  
a function of t i m e  is to   l inear ize   the  equat ions of motion  and  to   consider   the 
body as having  an axis of symmetry  about   which it spins.   Because  Lineariza- 
tion is inadequate   for   the  problem  considered  here ,  a more   gene ra l   app roach  
is used.   The  author   discovered  that   the   problem  can  be  completely  solved 
fo rma l ly  by cr i t ical ly   reviewing  the  concept  of a t t i tude;   I t   was  determined 
that  attitude is a simple  function of the  angular-velocity  history  in  infinite 
se r ies .   Wi th   th i s   descr ip t ion ,  a simple  vector  equation  that   lends  i tself  to  
i terat ions  can  be  obtained.   The  convergence  is   fas t .   A-detai led  exposi t ion 
of  the  method  follows. 
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SYMBOLS 

A(t)   matrix-dyadic  taking B:* into B 

A semimajor   ax is  of e l l ipt ic   orbi t  

B frame  attached  to  vehicle 

B :* f rame  i r ro ta t iona l   in   space  

E idemfac tor   o r  3x3  unit  matrix 

e 

I 

i 

x 
n 

V 

eccentr ic i ty  

unit  vectors of B::, seen   in  B 

unit  vectors of B::, s een   i n  B:: 

gravitational  constant  for  the  Earth 

(see  equation (8 ) )  

(see  equat ion (8))  

moment  of iner t ia   dyadic   a t   center  of m a s s ,   s e e n   i n  B 

orbit   inclination 

ra t io  of G to R , o r  3 q  

mean  angular   motion  in   orbi t  

t rue  anomaly 

nul l   or   zero  vector  

o rb i t   p recess ion   r a t e  

init ial   vehicle  spin  azimuth 

(see  equation ( 7 ) )  

orbit   angular  velocity 

dis tance  f rom  Earth  center   to   vehicle  

Earth- to-vehicle   direct ion,   seen  in  B 

Earth- to-vehicle   direct ion,   seen  in  B:: 

partitioning of r ( t )   i n   t e r m s  of X 

3 2 

n 

3 



s init ial   vehicle  spin  along No. 3 axis 

t t ime  

e initial  vehicle  spin-noding  angle 

0 (t) (see  equat ion (7))  

0 (t)  angular  velocity of B about B:*, s een   i n  B 

on(t) partitioning of o ( t )   i n   t e r m s  of A n 
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GENERAL  THEORY OF RIGID BODY MOTION 

Introduction 

The  interact ion of t h ree   po in t   masses   unde r   an   i nve r se   squa re   l aw   and  
the  rotation of a heavy  asymmetr ic   top  about  a f ixed  point   are   the  two  most  
outs tanding  unsolved  problems  in   Classical   Mechanics .   The  solut ions  for  
t hese   p rob lems   a r e  unknown in   what  is loose ly   ca l led   t t c losed   form,  ' I  which 
usually  means  the  solution is spec i f ied   o r   descr ibed   by   means  of f ami l i a r  
functions  and/or a f ini te   set  of in tegra t ions  of known  expressions  (quadra-  
tures).   The  language  employed is arbi t rary,   s ince  even  the  s implest   t rans-  
cendental  function,  et, is ultimately  defined i n  t e r m s  of an  inf ini te   process  
and so i s  not   s t r ic t ly   c losed.   The  general   second-order   l inear   different ia l  
equation  with  t ime-varying  coefficients,   furthermore,   has  been  proved un- 
solvable  in  closed  form.  The  hope of solving all physical.  problems  in 
c losed   form is thus  doomed  a t   the   s tar t .   The  best   a l ternat ive  is   to   re lax 
the   res t r ic t ions  of c losed  form  to   what  is cal led a formal   in tegra t ion ,   in  
which  each  step  toward  the  solution is specif ied  in   complete   detai l   as  a def- 
ini te   set  of a lgebra ic   opera t ions   and/or   quadra tures ,   whether   o r   no t   the i r  
number  is   f inite.   Thus,   the  definit ion of a formal   integrat ion  a l lows  the 
s teps   to  be car r ied   ou t   in   p r inc ip le ,   such   as   in   the   express ion   for   e t .   The  
goal   in   this   sect ion  is   the   formulat ion of a method by  which a l a r g e   c l a s s  of 
r igid  body  problems  can  be  formally  solved. 

The  motion of a rigid  body  about  i ts   center of m a s s   i s   d e s c r i b e d  by 
Euler ' s   dynamical   equat ions  in   connect ion  with  some  kinematic   re la t ion-  
ships   between  the  a t t i tude  var iables   and  the  angular-veloci ty   components .  
Euler ' s   equa t ions ,   which   mere ly   s ta te   tha t   the   t ime  ra te  of change of angu- 
l a r   momentum is equal   to   the  appl ied  torque,   are   wri t ten  with  respect   to   the 
body  itself.  The  equations  form a se t  of three  coupled  nonl inear   f i rs t -order  
differential   equations  for  the  angular-velocity  components w i ( i  = 1 ,  2 ,  3). 
The  equations a r e  

13i + (I2 - 11)w1w2 = L3 

The  torque  components  appear  as  forcing  functions  relative  to  the  homo- 
geneous  equat ions  ( the  f ree   s ta te)   and  usual ly   are   dependent  on  the  attitude 
var iables   and  the  t ime.   The  kinematic   re la t ions  are  of three  types,   depend-  
ing  upon  whether  direction  cosines,   Euler  angles,   or a s e t  of four  
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p a r a m e t e r s  are employed.  The  direction  cosine  specification is  composed 
of nine  f i rs t -order   l inear   different ia l   equat ions  with six a lgebra ic   cons t ra in ts .  
The   four -parameter   se t   sa t i s f ies   four   f i r s t -order   l inear   d i f fe ren t ia l   equa t ions  
with  one  algebraic  constraint .  On the  other  hand,  Euler  angles  ( the  most 
commonly  used)   sat isfy  three  highly  nonl inear   f i rs t -order   different ia l   equat ions.  
Euler   angles  are used  because  relatively  simple  equations  result   when small 
motion  approximations  are  introduced.  The  exact  analysis,   however,  is  com- 
p lex   and   requi res  a simultaneous  solution of 12, 7, o r  6 coupled  nonlinear 
equations,  depending  on  the  parameterization of att i tude.   The  method  to  be 
presented  intr0duces.a   new  descr ipt ion of att i tude  which  reduces  the  number 
of dependent   var iables   to   three-- the  angular-veloci ty   components .   The  mathe-  
ma t i c s  is carr ied  out   exclusively i n  vector-dyadic  terminology,  for  which  this 
problem is especially  suited.   This  compact  formulation  takes  the  form  of a 
s imple  nonl inear   f i rs t iorder   vector   integro-different ia l   equat ion.   The  formal  
integrat ion is then  carried  out  in  two  steps:  (1) an   i t e ra t ive   p rocedure   to   ob-  
ta in   o( t ) ,   and ( 2 )  substitution of o ( t )  into  the  kinematics.   By  this  approach, 
the  original  equation is shown  to  be  equivalent  to  an  infinite  set of l i nea r   f i r s t -  
order   vector   different ia l   equat ions.   The  set   i s   not   s imultaneous,   however ,  
but   orders   i tsel f   sequent ia l ly   in  a s e r i e s  of be t te r   approximat ions   to   the   exac t  
value,  that is, i teration.  The  theory of i t e ra t ions  is a tool of ana lys i s   for  
formally  solving a r e s t r i c t e d   c l a s s  of differential   equation  systems.  But  the 
ma jo r i ty  of equations is not  amenable  to  such  an  approach  to a formal  solution, 
because,   in   general ,  all the  steps  are  not  explicit .   Most  importantly,   the 
equations  for  the  higher  approximations  cannot  be  writ ten  in  detail   and  thus 
cannot  be  solved.  The  new  method of expressing  a t t i tude  accomplishes  a 
t ransformat ion  of the  mathematics  to  an  equation  that   can  be  handled  by  i ter-  
a t ions .   The   process  is  s t a r t ed  by  solving  the  free-body  equation  in  terms of 
elliptic  functions  to  get  oo(t).  The  time  variation of o o ( t )  is  then  substi tuted 
into  the  equation  for  ol(t) ,   which is inver ted   to   g ive   o l ( t )  as  a definite  quad- 
ra ture .   These   s teps   a re   repea ted   wi th   a2( t )   expressed  as  a quadrature   in-  
volving  the  known  oo(t) ,   ol(t) ,   and so on,  to  infinity.  Thus, 

W ( t )  = wo(t) + X o l ( t )  t XLU2(t) t * - - 

The  method  is   convergent  for  small   enough X ,  where  X is a m e a s u r e  of the 
torque   s t rength  i f ,  init ially,   the  body is spinning  near a s table   axis .   The 
s tab le   axes   for   an   asymmetr ic   body  a re   the   maximum  and   min imum  moment  
of iner t ia   axes .   The  intermediate   axis   is   unstable .   The  angular   veloci ty ,  
obtained  from a well-defined  set of quadra tu res ,  is then,  by  definition, a 
f i rs t   requirement   for   the  formal   solut ion.   Final ly ,   the   instantaneous  a t t i -  
tude  must  be  expressed.  This  is   done by us ing   o ( t )   i n  a special   coordinate  
t ransformation  that  is a function of the  o( t )   h is tory.   This   calculat ion of 
a t t i tude  is   s imply a last   quadrature  to  be  performed:  hence,   the  complete 
problem  has   been  formally  solved  in   the  mathematical   sense.   The  analysis ,  
while   basical ly   theoret ical ,   i s   pract ical   because  the  execut ion of each  suc-  
cessive  approximation  involves  only  t ime  and  patience.   I t  is especial ly  
convenient  to  apply  the  new  method  to  gravity  gradient  effects  because  the 
resu l t s   can   be   expressed   en t i re ly   in   t e rms  of circular  functions.   Only  the 

6 



first perturbation  must  be  calculated,  as a resu l t  of both  the  smallness of 
the  torque  and  the  high  initial  spin.  The  next  three  sections  present a new 
formulat ion of att i tude,  its application  to  gravity  gradient  torque  in  circular 
orbit,  and  the  formal  solution. 

Kinematic  Relations 

Notation  convention. - Two co -o r ig in   r ec t angu la r   Ca r t e s i an   f r ames   a r e  
assumed:  ( 1 )  B:X,which is  nonrotational  relative  to  space,   and (2) B,  which 
is attached  to  the  vehicle,   both  at   the  center of mass.   The  following  con- 
vention  will  be  used: i f  vi:x and  vi ( i  = 1 ,  2, 3) are   the   components   expressed  
in  B:: and  B,   respect ively,  of a cer ta in   vector ,   then  two  vectors ,  Y *  and V, 
a re   cons t ruc t ed   i n  a th i rd   f r ame ,   B t  , with  components of  vi:* and  vi.  Note 
that v:: is  ca r r i ed   i n to  v by  the  operation of a dyadic,  A,whose  components 
in  B t  a re   equa l  to the  e lements  of the  t ransformation  matr ix   that   takes   the 
vi*  into  the  vi.  Although  not  standard,  the  notation  makes  the  following 
ana lys i s   ea s i e r  to handle. 

Att i tude  as   rotat ional   his tory,-   Let  ei>x and ei(i = 1, 2 ,  3)  be  the  unit 
vec tors  of the  frame  Ba.  Note  that  the e i  a re   cons t ruc ted   in   Bt   f rom  the  
components  in B of the unit vec tors  of B*<. For   general i ty ,  BT was   made  
a sepa ra t e   f r am%from B  and B:x., If Bt  and B::c are  allowed  to  coincide,  it  
follows  that  the t i*  are  fixed,  while  the Qi v a r y  i n  t ime.   Further ,   the   vectors  
+*(t)  can  be  simplified  to 

If a i s  the  angular  velocity  of B about BZZ ( the   components   a re   in   B) ,   then   the  
$ i  behave  according  to  the  law 

h 
d t  i 
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The  minus  s ign is needed  in  equation (1) to   descr ibe   the   mot ion  of the  unit 
vec to r s  of B+ a s   e x p r e s s e d  in B. By s t ra ightforward  different ia t ion it can  
be  verified  that  equation (1) is sa t i s f ied  i f  @i( t )  is  defined a s   t h e   f o r m a l  
inf ini te   se   r ie  s 

A 
c . ( t)  = P.(O) 
1 1 

. t  
- jo o(t ' )  x :i(0)dt'  

t t' 
tJo o ( t ' )  X /  o ( t")  X :i(0)dtltdtl 

0 

+ . . .  

wheretbecause  vector   mult ipl icat ion  is   not   associat ive,   products   are   per-  
formed  from  right  to  left .   Equation ( 2 )  is thus a re la t ion  between  basis  
vec to r s   a t   t ime   t .  

Transformat ion  of an   a rb i t a ry   vec to r .  - The  vectors  V and V:: a r e  now 
w r i t t e n   i n   t e r m s  of Qi ( t )   and  @i::(t) a s  follows: 

3 
v ( t )  = v. :;:(t) c .  ( t )  

A 

1 1 
i = l  

3 

Note  that v has  components  in B, relative  to  the  unit   vectors of B:I: a s  
expres sed   i n  B, equal  to  the  components of V:: in B:::. This  is proper  i f  
v and ~ 2 : :  represent   the  same  abstract   quant i ty .   Thus,   the   importance of 
this  convention  is  that  though V and v::: a re   cons t ruc ted   in  B:::, information 
is  obtained  from  equation ( 2 )  about  components  relative  to  the  fundamental 
unit   vectors of B. 
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Since   the   &(o)   a re   re la ted   to   the  ci:lC by the  value  ofA(t) at the time 
t = 0, the  following is obtained  for v(t)  i n   t e r m s  of v:k(t): 

Note  that  equation ( 3 )  is  equivalent  to a coordinate   t ransformation.   Thus,  
the  usual   a t t i tude  parameters   have  been  avoided,   and  equat ion ( 3 )  may  be  
substi tuted  in  the  dynamical  equations  for  at t i tude-dependent  torques.  

Dynamics 

Functional  dependence of gravi ty   gradient   torque.  -At a given  point  in a 
gravitational  f ield,  a small body  experiences a torque i f  the   vector   gradient  
is no t   ze ro .   Fo r  a spherical   Ear th   f ie ld ,   the   torque i s  given by the 
expression 

In  the  equation  above, ris the   un i t   vec tor   f rom  the   Ear th ' s   cen ter   to   the  
satel l i te   and I i s  the  iner t ia   dyadic  of the   sa te l l i t e .   For  a c i r cu la r   o rb i t ,  
the   torque  is   thus  a function of bot2  att i tude  and  t ime. If an  oblate   Earth i s  
considered,   the   t ime  var ia t ion  in  r becomes   more   complex  as the  orbi t  
p r e c e s s e s .  No compl ica t ions   resu l t   f rom  the   f ie ld   change   caused   by   ob la te -  
ness ,   however ,   because   i t  i s  of a higher   order .   Thus,   only  the  forced 
motion  caused  by a change  in iz is of interest   in   this   analysis .  

Euler 's   equations.-When  described  on  board,   the  rotational  equation of 
motion  for a space  vehicle   in   the  f ie ld  of a sphe r i ca l   Ea r th  is as follows: 

3G ;x 1 . r  
A 

1 .  - o t w x  I - w = -  dt R3 

Note  that r ( t )  is not  known,  but  r;:(t)  (the  direction  in  space) is. A A 
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The  following  parameter )c has  a small   value of the   o rder  of f o r  
c lose   c i r cu la r   o rb i t s :  

The   to rque   express ion   can   thus   be   wr i t ten   in   t e rms  of A ,  as follows: 

A 
A ( r x  I r )  

A 

Complete  Solution 

Expansion  in a small   parameter.   -The  angular  velocity,  a, i s  
par t i t ioned  in   terms of t he   pa rame te r  A so  that 

o.(t) = oo(t) + A a l ( t )  + A a2(t) + * 
2 

Similarly,  r(t) can  be  par t i t ioned  as  a function of A .  A 

r (t) = ro(t) + Arl(t) + A r2(t) t - A 2 

By using  equation (3 ) ,  the   express ion   for   each  r,(t) can  be  found  as  follows: 

A 
ro(t) = A (0) r :k(t) 

- Jot 
A 

oo(tl) X A(o)  - r +(t)dtI 

t t '  
+Jo ao(tl) xJo w o(t 't) x A(o)  - T' :::(t)dt"dt' 

A 
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t' 
ol(tl) XI o o(tl l)  X A(o)  r z::;(t)dt''dt' 

A 

0 

- . . .  
t 

r2(t) = -lo 02( t f )  x A(o)  - r :::(t)dt' 
A 

+Iota 2 ( t t )  XI w o(tl l)  x A(o) '::(t)dt"dt' 

tjo oo(tt)  XI 0 2(t '1) X A(o)  * A r :::(t)dt''dt' 

t' 

0 

t t' 

0 

t '  
~ , ( t ' )  XI l ( t l l )  X A (0) 0 A r ::.(t)dt"dt' 

0 

and so  on. 

Equivalent   system of l inear  differential   equations.  - The  nonlinear 
equation (4 )  is reduced  to a se t  of l inear   equat ions  for   the W, by  equating 
in  X n  as  follows: 

I : " w  d + a  x I . O o = o  

I"0 dt d 1 + O o x I . O 1 + o l x I - a o  = r 0 x I - r o  

dt o 0 

with n -. 00. 
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T h e  first equation is  nothing  more  than  the  f ree-body case first solved by 
J a c o b i   i n   t e r m s  of ell iptic  functions.   The  general   equation  for 0, ( n  = 1, 
2 ,  . . . ) can   be   pu t   in to   the   s tandard   form 

where  

O(t)  = I - 1  (-ao X I t E X I . ao) 

with E as   the  idemfactor  

Formal   integrat ion  in   sequence.  - A s  wo is   known,  the  equation  for 01 
can  be  solved,   s ince ro depends  only on oo. It follows  that 0 2  can  be 
obtained,  since r depends  only  on 00 and 01. The re fo re ,  i f  at any  point  the 
solution  to all O k  t 0 5 k < dhas   been   ob ta ined ,   equa t ion  ( 7 )  i s  l e f t   f o r   o n ,  
whose  formal   solut ion i s  verified  by  straightforward  differentiation as 

where 

t t 
r-'(t) = E - g( t ' ) d t '  +I @(t ' )  - 0 

0 0 

The  init ial   conditions on the an, n > 0,were  chosen  as   zero  in   equat ion (8)  
because  by  equation ( 5 )  only  the  condition  on w o  i s  needed. 

Conclusion. -- Equations  (")and (8) define a sequence of expl ic i t   oper-  
a t ions ;   hence ,   o ( t )   has   been   de te rmined   formal ly .   Ins tan taneous   a t t i tude  
is determined  with  equation ( 2 ) ,  and  thus  the  complete  problem i s  solved. 
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APPLICATION O F  THEORY TO MORL 

F i r s t   Pe r tu rba t ion   i n   C losed   Fo rm 

Outl ine.-   Assume  an  asymmetr ic   vehicle   in  a p recess ing   c i r cu la r   o rb i t  
with  an  ini t ia l   spin,  s ,  given  to  it at the  pr incipal   axis  of maximum  moment  
of i ne r t i a .  If 11 <I2 < 13, 

= (!) 
because  the  vehicle  would  continue  to  spin  about  the  larger  axis if  t he re  
were  no  dis turbing  torques.  

The  t ime  var ia t ion of r:::(the orbit   unit   radius as  seen   in   the   space   f rame) ,  
shown  in  f igure 1, can  be  obtained  by  carrying  the  initial  unit  radius 

A 

a t   t ime  t = 0 ,  through  the  successive  rotations - pt,  i ,  and  qt. 

Cqt  Cpt + Si  Sqt  Spt 

Cqt  Spt t Si Sqt  Cpt 

Ci  Sqt 

where C c o s ,  S = s in .  

From  the  or ientat ion of the  vehicle  for t = 0 in  f igure  1,   i t   follows  that  
A(0) has  the  form 

13 



Init ial  spin  axis 

r T = Vernal  equlnox 
p = Orblt precesslon 
q =  Orbit  angular  velocity 
i = Orblt lnclmatlon 
0 = Origlnal spln nodlng angle 
d - Orlglnal  spin azimuth 

Figure 1. Orbital  Motion and Vehic le   In i t ia l   At t i tude 

Because of the  construction of r O(t)   and   the   par t icu lar   choice  of oo(t), 
the  following  definition can be  made:  

a ( t )  = A (0 )  - r:::(t) = 
A 

The   f i r s t   t e rm  in  ro(t) will   be  a,while  the  second,  third,   etc.  , t e r m s   a r e ,  
in  order,  the  following: 

/:a0 X Jot' 
t 

oO x a dt"dt' = I ,  oo x (st'p) d t '  

- " 1 s2t2(;l) 1 2 2 
2 6 2  = - z s  t y 
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t" 
x a dt"'dt"dt' = - l t w o  x ( -  - s t y )  d t '  1 2 12 

2 

and s o  on. 

The  whole  expression  for  ( t)   is   divided  into  odd  powers of t multiplied by 
the   vec tor  p ,  and  even  powers  of t (grea te r   than   zero)   mul t ip l ied  by the 0 

vec tor  Y ,  with  a l ternat ions in sign for each, as  follows: 

k=o 

ro(t) = o(t) -P(t) s in  st + y ( t )  cos st [ -1 
The  value of $l( t )   (see  equat ion (7) )  can   be   wr i t ten   p repara tory  to solving 
f o r  o l ( t ) ,   s ince   t he   componen t s  of u ,  0 , and y (that i s ,  the ai,) a r e  known. 

l i  

1 - 
I1 

I -  = 0 

0 

0 

0 
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hence 

I3 - I2 

I1 -[- - 

r 
02 

r 0 3  

ro 1 

01 

r 02 

where roi is the ith component of ro. 

The  value of @(t)   f rom  equat ion ( 7 )  is obtained  next  to  construct I? and 
(see  equat ion(8))   and  to   solve  f inal ly   for  01 in  equation (8). 

\ O  0 O I  
Some of the  f irst   few  integrals  in  the  definit ions of r and r from  equat ion 
(8 )   a r e   fo rmed   a s   fo l lows :  

-1  

Lt 
O P O  

edt' =.(. 0 .)= t e  

0 0 0  

t 3 
- - P P - @  2 . 3  

and s o  on. 
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Thus,  r and IT1 are   express ions   which   d iv ide   themselves   in to   odd  
powers  of t t i m e s  8 and  even  powers  of t (g rea t e r   t han   ze ro )   t imes  H. 

If pp<O, then (I3 - 11) (I3 - 12) > 0 and  the  hyperbolic  functions  become 
c i rcu lar ,   thus   s ta t ing   tha t   o l ( t )  is bounded.  When  I3 is the   l a rges t   moment  
of i ne r t i a ,  as  is assumed  in  this  study,  the  motion of the  free  body is 
known  to  be  stable.  Hence, p p < 0, and,  by a well  known  identity, 

The  problem  now  can  be  solved  for   ol( t )   in   equat ion (8). The  solution  will 
resu l t   in   an   enormous   bu i ldup  of sums of  products  of c i rcular   funct ions 
because of the   s t ruc ture  of equations ( 9 )  and ( l o ) ,  which  form  equation ( l l ) ,  
and   the   s t ruc ture  of equation  (12),  which is formed  f rom  equat ion ( l l ) ,  
premultiplication by equation (14),  integration,  and  premultiplication by 
equation (13). To  handle  this  complex  situation  efficiently, a computer 
a lgebra  for   c i rcular   funct ions  was  invented;   this  is explained  in  the  next 
section. 

Algebra of circular  functions.-   I t   has  been  stated  that   the  solution of 
ol(t)   involves  the  manipulation of a l a rge   number  of c i r c u l a r   t e r m s   r e s u l t -  
ing  f rom  products  of sums.  Because  circular  functions  can  be  either 
cos ines   o r   s ines ,   some  sys tem of identification is  needed  to  keep  track of 
each   te rm.   The   s i tua t ion  is more  involved  when  the s u m  of products  
is  cons idered ,   for   example ,   s in   x l t  C O S  x2t  added  to C O S  x3t   s in   x4t   s in   x5t .  
Uniform  notation  was  used  in  which  only  cosines of t a re   cons idered .   Thus ,  
terms  can  be  ident i f ied  with  subscr ipts   without   regard  to   the  kind of func- 
tion. If products of cos ines   a re   genera ted ,   they   can   be   reduced   to   sums of 
cosines  by a redefinition of constants.   Thus,  

cos x t cos  x2t = z [,,, (x1 + x ) t + cos  (x1 - x2)t] 
1 

1 2 
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Cosines   were  chosen,   s ince,  of  the  two  functions,  only  they  reproduce 
themselves  in  the  above  type of decomposition.  The  elimination of s ines  
is not  straightforward, and a s u p e r s c r i p t  was  employed  with  an  ensuing  set  
of a lgebra i c  rules  of combination. A sine  function is  converted  to  a cosine 
as follows: 

s in  x t = C O S  (X t - 7) 0 O T r  

Clear ly ,  x 1s a constant  only  in  symbolism  and  will   be  handled as such. 
The   superscr ip t  1 indicates  that a subtraction of TT / 2  is hidden. A supe r -  
s c r ip t  of - 2 ,  for  example,   would  mean  subtraction of - TT o r ,   equa l ly ,  
addition of TT.  It   should  also  be  noted  that   xk  behaves  numerically as i f  i t  
were  equal  to xo under  operations of integration  or  differentiation,  except 
that for integration  the  value of k must  be  known  to  evaluate  the  limits. If 
sums  such  as  those  in  cos (xl l*  x2J) t   a re   to   be   per formed,   the   super -  
s c r ip t s  (or  indexes)  obey  the  following  rule: 

1 .  

- i  x1 f x = (x1 f x2) if j 
2 

In carrying  out  the  explicit   determination of ol( t ) ,   the   constants   in  ai cox  xi' 
are   redef ined  half  a dozen  t imes,   and  each  t ime i r u n s   f r o m  I to a 
la rger   number .   At   each   s tep ,   i t  i s  easy  to  program  the  defining  relations 
on a computer  to  obtain  the  values of ai ,  xi ,   and  the  index. If all detai ls  
w e r e  of in te res t ,   i t   would   be   necessary   to   do   the   a lgebra  on a computer  
because  each  component of 0 1   ( t )  is  made  up of 1 , 2 9 8  te rms .   However ,  
only a small number of t e rms   ( those   assoc ia ted   wi th   the   o rb i t   p recess ion)  
are   s ignif icant ly   large  for   spin-axis   wander ,   thus   the  res t   can be eliminated. 

Angular  velocity. -- The  problem  here  i s  to  obtain a more   de ta i led   de-  
scr ipt ion of o l ( t )   in   c losed   form  f rom  the   p receding   ou t l ine   by  u s e  of the 
algebra  of  circular  functions  just   developed.  The  following  operations  are  to 
be pe r fo rmed   i n   o rde r :  A(o) ' r*(t) = a ( t )  is obtained  from  equations (9)  and 
( l o ) ,  then  ro( t )  i s  obtained  from  equation ( 1  l),  $ l ( t )  i s  obtained  from  equation 
(12) ,  and o ( t )  is  obtained  from  equation (8) using r a n d  r-1 in  equations 
(13) and (14\. The   r e su l t s  up to   +l( t )   are   given  below  (see  equat ion  (20))for  
o l ( t )   to   show  the   l a rge   number  of c i rcular   funct ions  required.  
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36 2 D ~ ,  cos a.t 
J \ 

j = l  

36 2 D ~ ,  c o s  a.t 
J 

j = l  

9 

2 B3, 
cos x.t 

j = l  1 
J 

' 648 2 E l ,  cos  c . t  
J 

j = l  

648 2 E2, cos  c .t 
J 

j = l  

2592 2 F. c o s  f .t 
J \ j = 1  
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The  def ining  re la t ions  f rom  equat ions (9) and  (10)  for 0 ( t )   are ,   wi th   the  use 
of equation (15), 

cos y t = cos pt 

cos y t = cos qt 

1 

2 

3 

4 

cos y t = sin pt 

cos y t = sin qt 

1 
B1, 1 =-TA1l 

B 1 , 2  - -TA1l  

B1, 3 = z c1 

1 - 

1 

1 
B1 ,4  =z ' 1  

1 
B 1 , 5  - - Z A 1 2  

- 

B 1 
1 , 6  - -ZA12  

1 

- 

B1, 7 = z c1 AIZ 

1 
B1, 8 = z '1 A12 

B1, 9 = '2 *13 

x4 - Y3 - Y 4  

x5 = Y3 -+ Y2 

- 

B2, 1 = $A21 

B 1 
2 , 2  = - T A 2 1  

B 
2 J  

" -; c1 A21 

B 2 , 4  - '1 A21 
- -  

B 1 
2 , 5  - - F A 2 2  

- 

B 1 - 
2 , 6  - "A 2 22 

B 2 , 7  - '1 A22 

2 , 8  - ; '1 A22 

" 

B " 

B2, 9 2 23 = C  A 

B = - A  1 
3 , l  2 31 

B 1 
3 , 2  2 31  

= - A  

B 3 , 3  = z  1 31 ' C  A 

B 
394 - z' '1 A31 
" 

B - - - A  - 1 
3, 5  2 32 

B3J 6 = - Z A32 

B3 ,7  = z  ' C  1 A 32 

1 

B3,8  - z  1 32 - l C  A 

B3, 9 2 33 = C  A 
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with 

C = sin i 

C = cos i 

1 

2 

and 

A l l  = - s in  c# 

A2 1 = - COS e C O S  + 
A31 = s in  8 cos + 

A12 = cos  c# 

A22 = - c o s  e s i n +  

A32 = s in  8 sin + 

so  tha t   t he   r e su l t   i s  (17).  

The  defining  relations  for r ( t )  (see  equat ion (11)) a r e  
0 

c o s  z t = c o s  st 

C O S  z t = s in   s t  

1 

2 

a .  
1 

= xi t z 1  

a 9+1 = x. " z l  
1 

a = x .  + z  18t i  1 2 

a 27+i - xi - z2 
- 

A13 = rl) 

A23 = sin 8 

A33 = case 

i = 1, 2 ,  . . . ,  9 

i = 1 , 2 ,  . . . , 9  
i '  = i + 9j  
j = 0 , 1  

result ing  in  equation (18). 

The  analogous  relations  for @ (see equation (12) )  a re  
1 
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E = x1 + ai i 

E 72+i = x2 + ai 

E 144+i x3 "i 

'216t i  = x4 ai 

'288ti  = x5 

E 36Oti = x6 a. 1 

E 432 t i  = x7 ai 

E 504ti  = x8 ai 

'576+i = x9 ai 

i '  

1 
7 2 t i '  = z G1B3,  2D2, i 

144ti '   G1B3,  3D2, i 

216 t i '  = 7 G1B3,  qD2, i 

288 t i '  = 1 3, gD2, i 

360t i '  = 7 G1B3,  gD2, i 

1 
E l , 4 3 2 t i '  2 1 3, 7 2,  i 

1 
504 t i '  = z G1B3,  gD2, i 

1 

1 

' G B  

1 

= - G B  D 

576t i '  = Z  1 3, 9 2,  i ' G B  D 

E 36 t i  = x1 - "i 

E - 
108+i - x2 - ai 

E 180t i  - - x3 - ai 

E 252t i  - x4 - a' 
- 

1 

E - 
324+i - x5 - a i 

E 
396t i  - x6 - ai 

- 

E 
468 t i  - x7 - ai 

- 

E 540t i  = x8 - a' 1 

E 
6 1 2 t i  - x9 - ai 

- 

i = 1, 2, ..., 36 

E2, i '  2  2 3,  1 l , i  

E2 ,72 t i '  -z - l G B  2 3 , 2  D l , i  

- -  - l G B  D i = 1, ..., 36 

i '  - - i t 36j 

1 
E2,  144ti '  = G2B3,  3D1, i j = 0 , 1  

1 
E2, 2 16 t i '  = - G B  D 2  2 3 , 4   l , i  

E2,  288ti '  = ' G B  2 3, gD1, i 

E2,  36Oti' =z ' G B  2 3,  6D1, i 

E2 ,432t i '  = z  ' G B  2 3,  7D1, i 

1 
E2,  504ti '  = z G2B3,  8D1J i 

1 
E2,  576ti '  = z G2B3,  9D1, i 
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w h e r e  

I3 - I2 

I1 
G1 = 

I1 - I 3  

I2 
G =  2 

thus  giving  the  first  two  components of equation (19). 

N o  calculations  will   be  made of Fj   or   f j   in   equat ion  (19)   because  i t  
can  be  seen  f rom  the  fol lowing  formulat ions  that   they are unnecessary.   The 

c j  and  Ei , j   can  be  wri t ten  in  a m o r e   c o m p a c t   f o r m  as  

‘36[2(j-  l)]+i = x. + a. 
3 1  

‘36[2(j-l)+l]+i j i  = x  - a  

- 1 
36[j+2(k-l)]ti - 2- G1 B 3 , k  2 , 1  

D .  

1 
E2,  36[j+2(k-l)]+i 2 2 3, k 1, i 

= - G B  D 

i = 1,  2, ..., 36 

j = 1, 2,  ..., 9 

i = 1, ..., 36 
j = O ,  1 

k =  1, . . . ,  9 

The  index  associated  with ck has  been  neglected  thus  far ;   however ,   because 
of equation  (16),  the  calculation of the  index  is   seen  to  be  straightforward. 
In fact ,   the   recursive  re la t ions  for   the  indexes  have  the  same  form a s  the  de- 
fining  relations  for  the  xi ,   ai ,   and  the Ei, with  the  following  initial  conditions: 

index (y  ) = 0 

index (y,) = 0 

index  (y,) = 1 

index (y,) = 1 

index ( z  ) = 0 

index ( z  ) = 1 

1 

1 

2 

23 



Next, $1 in  equation  (12) is used  with  the  values of r a n d r "  in  equations ( 1 3 )  
and (14) to   prepare  to   solve  for  a1 in  equation (8). 

To obtain  ol( t ) ,   the   above  equat ion  must   be  integrated,   which,   for   typical  
t e rms   ( t he   i ndex  of each c i  must   be  observed) ,   resul ts   in   the  fol lowing:  

t 

0 
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The  circular  functions  are  expanded  and  combined  into the more   usable  
f o r m s  

and 

The   same  opera t ions   a re   per formed  for   the   t e rms   eva lua ted  at t = 0. Now 
the  complete   integrals   can  be  wri t ten  as   fol lows:  

where  

648 E 

Al( t )  = j E ' sin E .t 
j = 1  E j  + PII 

1, j 3 
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648 

Bl( t )  = - x El, cos ~ . t  
j=1 + PP J 

j 

and 

[412(t') s in  c p t ' d t '  = B2(t) cos G t  -t A2(t)  sin G t  - B2(o) 

with 

648 

B2(t) = - IF-% E2, cos E .t 
j = l  ' j  + PP J 

The re fo re ,  

I,' I"'(t') - $l(t ') d t '  

may  be  wri t ten  as  

\ 
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I 

for 

It  then follows that 

i s  t rue,  

Thus,  upon  multiplying  on  the  left by, T(t) ,  a simple  relation  for  " ,( t)  

= W )  + r ( t )  - +(o) 

is obtained  and  is   wri t ten  in   terms of the  cosine  notation. 

c o s  y . t  
J 

cos y . t  
J 

(t ') dt '  

f o r  

cos  y.t  = c o s  E . t  

C O S  (y648 + jSt = sin ~ . t  
J J 

J 
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j = 1 ,2 ,  - -  e ,  -648 

648 

G1, 1297 = [-EiEl, i s in  (E io) + pE2, 
i= l  e 2  + p p  

j 

j = 1 , 2 ; . * ,  648 

G2,  6 4 8 t j  - E 
- 

648 I 

G2,  1297 = E2 [- 'iE2, i s in  ( E .  1 0) + cos ( E . o )  1 1 
i = l  i t PP 

Only  the first two  components of al(t) a r e   r e q u i r e d ,  as will  be  shown;  each 
has  now been   expressed   by   recurs ive   re la t ions   as  a sum of 1,  298 c i r c u l a r  
functions.   The  amount of work  saved by the   a lgebra  of circular  functions 
is   apparent ,   for  to h a v e   d e t e r m i n e d q ( t )  by brute-force  manipulations  would  have 
required  many  pages  and  the  possibil i ty of e r r o r  would  have  been  greater.  Note 
that I X al(t) I L L  I w .(t) I because  of the  formation of the  coefficient  leading 
to   the  Ci , j   and  the  smallness  of A . This  shows  that  the  coning  about  the 
instantaneous  angular  momentum is very  small ,   a l though  the  angular  
momentum  has  a larger   but   s low  wander   in   space  (much  l ike a fast top).  
The  angular-momentum  wander  as s e e n  on board  the  vehicle   must   be 
determined  next .  
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Spin-axis  direction. - In the   l as t   sec t ion ,  a c losed   fo rm  expres s ion   fo r  
the   f i r s t   per turba t ion  of angular   veloci ty   was  determined as w ( t )  = O  o( t )  + x o l ( t ) .  Now the  spin-axis  wander  caused by the   addi t iona l   t e rm  hol ( t )   mus t  
be  determined.   This  is bes t   accompl ished  by expressing  the  ini t ia l   d i rect ion 
in   space ,h  (o),  as seen   on   board   the   vehic le   a t   t ime  t .  A 

Substituting  the  above  in  equation ( 3 ) ,  

where  

0 ( t )  = s 

with 

x 1298 
a .  (t) = G. cos y . t  
1 1, j J 

j = l  

a3(t)  = x S [ +13(t') d t '  

i = 1 , 2  
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In the  definitions of 6 ,  below,  the  number 0.f ones   in   f ront  of the a i  r e p r e s e n t s  
the  number of integrat ions to be  performed,   for   example,  

- l l l l a  E - 1 a (tiv)dtivdt  ladt "dt' 

s o  that  
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Note  that as the  mult iple   integrat ions  progress ,   more  powers  of Y .  a r e  
thrown  into  the  denominator.  A s  the   in tegra ls   vary   f rom 0 to  t,  &e  index 
associated  with Y . must  be  observed  for  evaluating  the  l imit   at  t = 0. J 

cos yt'dt' = - 1 [sin yt - s in  (yo,] 
Y 

t2 
cos yt"'dt"'dt"dt' = - - q sin (YO) 

Y Y 

When  the  required  integrations  are  performed,  the  algebra  can  be  arranged 
as   fol lows:  

+< (1 "+ s2 t2   s4 t4  , . .) 
2 4! - 

'j 

t<(l"+ s2 t2   s4 t4  

Y i  
J 

3 3  +...) 

4 

31 



3 3 3  

\ 

t c o s  (y.o)[; 2 (1 - y 2 2  + -) + ...]I 
J 

'j 

A s imi la r   express ion   resu l t s   for   hZ( t ) ,  so that  when  the  infinite  series  are 
summed up,   the   fol lowing  expressions  are   obtained  for   hl( t )   and  hZ(t) :  

12 98 2 
hl( t )  = x S 4 1.1, [- 5 cos y.t 

i = l  , s V .  J 

2 
S t c o s  (y.0) sin s t  

J 
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2 
S 
" sin (y.0) s in  st + COS (y.0) cos st S 

'j J J 1 
+ G1, j[t sin y.t  - - s in  S (y.0) cos s t  

J Yj J 

S 
2 

The cosine  notation  again i s  used  to r e w r i t e  hl and h2. 

h+t) = 2g8 N1, C O S  q .t 
j =  1 J 

2598 
h2(t) = N2, c o s  '1.t 

j =  1 J 

with 

cos q . t  = cos  y.t  
J 

j = 1 , 2 ,  ..., 1298 
J 
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N . =  
1 2  3 

N1, 1298+j - 
- 

1298 

i = l  N1, 2597 s 
= - -2 G1, C O S  (y.0) + - S G2, s i n  (yio) 

1 Y i  1 
Y i  

N2 
= -  

G2,  , 2597  s G1, s in  (y.0) 1 
C O S  (y. 0 )  - - 

Y i  

S 

i= 1 1 1 
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A total  of 5,  000 t e r m s  is involved 

From  the  denominators  

1 
2 

1 ”  
2 

S 

’j 

and  the  formation  s t ructure   of  E ., i t   can  be  seen  that   the  most important  
contributions  occur  when J 

yi = s*2p 

where p is the   o rb i t -precess ion   ra te .  As  seen   in   space ,   the   t e rms   con-  
taining  the  cGrresponding  frequencies p and  2p  contribute  most  to  the  spin- 
axis   wander .  

Numer ica l   Resul t s  

Two  examples  were  investigated,   one  with  the  sun  l ine as  the  vernal  
equinox,  making + =  0 and 8 = TT 1.2 in A(o) and  f igure  1, and  the  other  with 
the  conditions  three  months  later,  so  that $ = ~ r / 2   a n d  8 =  T T / ~  - ( ( w h e r e  6 

is  the  obliquity of the  ecl ipt ic) .   Both  special   examples   required  consider-  
ably  less   a lgebraic   calculat ions  than  the  general   case.   These  calculat ions 
were  performed  for   the  most   par t   wi th  a s l ide   ru le .  MORL constants   used 
for   the  calculat ions  are  

= 4. o x l o 5  slug ft 2 

I2 = 6. 84 x 10 slug  ft 

I3 = 6. 85 x l o 7  slug  ft 

7 

2 

i = 28. 6O 

s = 3.96 x 10 r a d / s e c  

p = 1.454 x r a d / s e c  

q = 2. 34 x 10  r a d / s e c  

-1  

- 4  

and 

E = 23. 5 O  

moments  of i ne r t i a  

orbit   inclination 

spin 

orb i t   p recess ion  

orbi t   angular   ra te  

obliquity of the  ecliptic 
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For  each  example,   an  upper   bound of 2 .5"  was  found  on  the  angle of wander.  
The   sp in   ax is   (maximum  moment  of iner t ia)   deviates   f rom  the  instantaneous 
angular   momentum  vec tor  by a t   m o s t  0 . 4  seconds of a rc ;   hence ,   there  is no 
coning.  Thus,  the  motion  in  space is that of a s low  excursion  .a t   orbi t -pre-  
cession  f requency  and  does  not   exceed 2.5" .  
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CONCLUSION 

The   sp in-axis   s tab i l i ty   ( in   iner t ia l   space)   for   an   asymmetr ic   body  under  
the  action of gravi ty   gradient   while   in   orbi t   about   an  oblate   Earth  was 
investigated. MORL parameters   were   used .  A new  method of i terat ions for 
r igid  motion,   resul t ing  f rom a different  technique of expressing  att i tude,  
yielded a s e r i e s  of approximations  with  very  fast   convergence.  I t   was  found 
that   there   is   no  appreciable   coning;   specif ical ly ,   the   spin axis (axis of 
maximum  moment  of iner t ia )   devia tes   no   more   than  0. 4 seconds of a r c   f r o m  
the  angular  momentum  vector as i t   wanders   in   space.   The  s low  var ia t ion of 
angular  momentum  from  init ial   posit ion  was  found  to  be  tolerable;   i t  
amounted  to  no  more  than 2. 5 O .  The  most   important   discovery  was  that   the  
upper  bound of 2. 5O is independent of boundary  conditions  which  involve 
different   spin-axis   angles   to   the  Earth 's   equator .  
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APPENDIX 

Extension  to  Elliptic  Orbits 

The  spin-axis  stability  analysis  method as it is applied  to  an  oblate 
Earth  f ie ld   involves   an  inexact   descr ipt ion of the  orbit   radius  vector.  An 
ac tua l   near -c i rcu lar   o rb i t   a round  an   ob la te   Ear th  is replaced  by  uniform 
c i rcu lar   mot ion   in  a p lane   tha t   p recesses  at a constant  rate  about a fixed 
l ine,   the   polar   axis .   Near-el l ipt ical   orbi ts   can  be  t reated  s imilar ly  by 
replacing  the  actual  orbit  by a t ruly  e l l ipt ical   orbi t   in  a plane  assumed  to  
p r e c e s s  at a constant   ra te   about   the  polar   axis .  A second  uniform  motion 
represent ing  the  precession of per igee  a lso  can  be  added  vector ia l ly .  
Since  the last two precess ions   a re   s imple   to   incorpora te ,  it wil l   be   assumed 
that  the  orbit  is taken  in  the I*, 2* plane.  Equation (4) shows  that  the - 

var iab les  of interest   in   the  torque  expression  are-  and r*(t); therefore  
A 

R3(t) 
these  must  be  obtained as a function of t ime.  To employ  the  expansion in  
a smal l   parameter ,   however ,   the   parameter   mus t   be   changed   to  A' , 
defined as  follows: 

where  A i s   the   semimajor   ax is .  No rea l   change   in   parameter   o rder  of 

magni tude  occurs ,   hence [R:t) - J is now of in t e re s t  
3 

Firs t ,   R(t)   (whose  expansion i n  t e r m s  of the  eccentricity  is   given  on 
page 1 7 1  of r e fe rence  1) m u s t  be  calculated. By r ea r r ang ing   t e rms ,   R( t )  
can   be   expres sed   a s   FoJ r i e r   cos ine   s e r i e s   i n   wh ich  n is the  mean  angular 
motion  and e is   the   eccentr ic i ty .  

" 2 - 1 + - e t (- e + ? e 3  - 5 e 5  s . . . )  c o s n t  
A 2 8 192 

+ ( - L e 2   + - e  - 16 e t . . . )  cos  2nt 1 4 1 6  
2 3 
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t (-:e3 t- 45  e5 - . . . ) cos 3nt 128 

t (-'e4 + " e  - ...I cos 4nt 
2 6  

3 5 

125 5 
3 84 

t (- - e t . . . ) cos 5nt 

t ( - e6 + ...) cos  6nt  

t ..o 

The  coefficient of cos   knt  is an   in f in i te   se r ies   in  e with  the  lowest  power 
equal  to  k.   The  order of this  coefficient  is   identified as  k;  the  coefficient 
is  identified as  bk. If a c e r t a i n  e has   been  chosen,   the  series can  be  cut  
off a t   s o m e  k = lo. At a given  k ,   bk  can  be  carr ied  out   to   the  required 
accu racy ,   where   i t   w i l l   be  called b'k.   Thus,  

7 QO L 
R o  1 + ( % +  
A .  

1 blk cos knt) 

k =  1 

1 
F o r  - , the  Binomial  theorem is used  to g roup  the   t e rms  as  follows: 

R3(t) 

L e 2 bIk cos knt) + 6  (y+ 2 

k = l  

- P O  
L e 1 bIk cos knt) 

3 
- 10 (y + 

k =  1 

+ .  . . 
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andconvergence is assuredbecause-- 1 + 5 with.  161 < 1 f o r  all e. Note 

that  only a finite  number of te rms   s ign i f icant ly   cont r ibu tes   because  of the 
products  of  the  b'k.  In  particular,  the jtih power of a bracket   wil l   contain 
coefficients of t he   sma l l e s t   o rde r  j .  In   other   words,   the   desired  funct ional  
re la t ion is a f ini te   sum of finite  products of c i r c u l a r   t e r m s .  

R(t)- 
A .  

Next, i t i s   impor tan t   to   express   the   t ime  var ia t ion  of r*(t),  which is A 

best   done by giving  the 1 and  2 components of t h i s   un i t   vec to r   i n   t e rms  of 
the  t rue  anomaly w .  

An  expansion of v i n   t e r m s  of e f rom  page 171  of r e f e r e n c e  1 can  be 
a r r a n g e d  to f o r m  a modi f ied   Four ie r   s ine   se r ies .  

u = nt + (2e  -- e3 + - e - ...) s in   n t  3 50 5 
1 2  96 0 

+ ( z  e'-% e4 + B e  - . . )  s i n 2 n t  
96 96 0 

+ (12 13 e 3 -5 e5  t ...) sin  3nt 

6 

+ (L$e4--  902 96 e 6 + . . .) sin  4nt 

1097 5 
+ (me - . . .) sin  5nt 

+ (g e6 - . . .) sin  6nt  

t ... 

A s  before,  the coef f ic ien t   ( se r ies   in   e )  ak of s in   knt   is  of o r d e r  k, hence 
the   Four i e r   s e r i e s   may  be cut off a t  k = 1 1   f o r  a chosen  e.   I t  i s  again 
assulned  each zl( is  car r ied   ou t   to   the   requi red   accuracy ,  aIk. 

5 
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If the  above  expressions a r e  expanded  by  the  angle  sum  rule,   additive  terms 
of products  of the  following  form  appear:  

cos  (atk sin  knt)  

s i n  (a1 s in   kn t )  
k 

c o s  (a' s in   knt)  = Jo(atk) t 2 k c J2i (atk) cos 
i =  1 

m 

In  the  r ight-hand  sides,  only a finite  number of te rms   cont r ibu tes   because  of 
the   smal lness  of the a '  for   l a rge   enough k and  the  form of J . .  k 1 

3 
Thus,  both hk] and  the  components of b ( t )   a r e   e x p r e s s e d  as  finite 

s u m s  of f inite  products of c i rcular   funct ions of t ime .  By  the  operations of 
equations  (1  1)  and  (12)  and  the  formation of o l ( t )   i n   equa t ion  (8), th i s  

condition is  retained.  (Note  that  in  equation ( 1 2 )  the  factor  
be  inserted.)  

It has  been  shown  that  algebraic  manipulations of c i rcular   funct ions  can  be 
per formed  by  a computer.   Hence, a ve ry   accu ra t e   desc r ip t ion  of ell iptic 
motion is integrable   for   gravi ty   torque  effects   on  an  asymmetr ic   body.   The 
details   and  the  amount of work  depend  on  the  value of e .  
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